51 research outputs found

    Toxoplasma Infection Induces Sustained Up-Regulation of Complement Factor B and C5a Receptor in the Mouse Brain via Microglial Activation: Implication for the Alternative Complement Pathway Activation and Anaphylatoxin Signaling in Cerebral Toxoplasmosis

    Get PDF
    Toxoplasma gondii is a neurotropic protozoan parasite, which is linked to neurological manifestations in immunocompromised individuals as well as severe neurodevelopmental sequelae in congenital toxoplasmosis. While the complement system is the first line of host defense that plays a significant role in the prevention of parasite dissemination, Toxoplasma artfully evades complement-mediated clearance via recruiting complement regulatory proteins to their surface. On the other hand, the details of Toxoplasma and the complement system interaction in the brain parenchyma remain elusive. In this study, infection-induced changes in the mRNA levels of complement components were analyzed by quantitative PCR using a murine Toxoplasma infection model in vivo and primary glial cells in vitro. In addition to the core components C3 and C1q, anaphylatoxin C3a and C5a receptors (C3aR and C5aR1), as well as alternative complement pathway components properdin (CFP) and factor B (CFB), were significantly upregulated 2 weeks after inoculation. Two months post-infection, CFB, C3, C3aR, and C5aR1 expression remained higher than in controls, while CFP upregulation was transient. Furthermore, Toxoplasma infection induced significant increase in CFP, CFB, C3, and C5aR1 in mixed glial culture, which was abrogated when microglial activation was inhibited by pre-treatment with minocycline. This study sheds new light on the roles for the complement system in the brain parenchyma during Toxoplasma infection, which may lead to the development of novel therapeutic approaches to Toxoplasma infection-induced neurological disorders

    Sites and Heritage in the Hands of Citizens “DAZAIFU Citizens’ Heritage”

    Get PDF
    平成24年(2012)12月21日(金)及び22日(土)に、平城宮跡資料館講堂において開催した

    Incidence and mutation analysis of glucose-6-phosphate dehydrogenase deficiency in eastern indonesian populations

    Get PDF
    We conducted a field survey of glucose-6-phosphate dehydrogenese (G6PD) deficiency in the eastern Indonesian islands, and analyzed G6PD variants molecularly. The incidence of G6PD deficiency in 5 ethnic groups (Manggarai, Bajawa, Nage-Keo, Larantuka, and Palue) on the Flores and Palue Islands was lower than that of another native group, Sikka, or a nonnative group, Riung. Molecular analysis of G6PD variants indicated that 19 cases in Sikka had a frequency distribution of G6PD variants similar to those in our previous studies, while 8 cases in Riung had a different frequency distribution of G6PD variants. On the other hand, from field surveys in another 8 ethnic groups (Timorese, Sumbanese, Savunese, Kendari, Buton, Muna, Minahasa, and Sangirese) on the islands of West Timor, Sumba, Sulawesi, Muna and Bangka, a total of 49 deficient cases were detected. Thirty-nine of these 49 cases had G6PD Vanua Lava (383T>C) of Melanesian origin. In our previous studies, many cases of G6PD Vanua Lava were found on other eastern Indonesian islands. Taken together, these findings may indicate that G6PD Vanua Lava is the most common variant in eastern Indonesian populations, except for Sikka

    Selective cytotoxicity of dihydroorotate dehydrogenase inhibitors to human cancer cells under hypoxia and nutrient-deprived conditions

    Get PDF
    Human dihydroorotate dehydrogenase (HsDHODH) is a key enzyme of pyrimidine de novo biosynthesis pathway. It is located on the mitochondrial inner membrane and contributes to the respiratory chain by shuttling electrons to the ubiquinone pool. We have discovered ascofuranone (1), a natural compound produced by Acremonium sclerotigenum, and its derivatives are a potent class of HsDHODH inhibitors. We conducted a structure–activity relationship study and have identified functional groups of 1 that are essential for the inhibition of HsDHODH enzymatic activity. Furthermore, the binding mode of 1 and its derivatives to HsDHODH was demonstrated by co-crystallographic analysis and we show that these inhibitors bind at the ubiquinone binding site. In addition, the cytotoxicities of 1 and its potent derivatives 7, 8, and 9were studied using human cultured cancer cells. Interestingly, they showed selective and strong cytotoxicity to cancer cells cultured under microenvironment (hypoxia and nutrient-deprived) conditions. The selectivity ratio of 8 under this microenvironment show the most potent inhibition which was over 1000-fold higher compared to that under normal culture condition. Our studies suggest that under microenvironment conditions, cancer cells heavily depend on the pyrimidine de novo biosynthesis pathway. We also provide the first evidence that 1 and its derivatives are potential lead candidates for drug development which target the HsDHODH of cancer cells living under a tumor microenvironment

    Further Molecular Analysis of G6PD Deficiency Variants in Southern Vietnam and a Novel Variant Designated as G6PD Ho Chi Minh (173 A>G; 58 Asp>Gly): Frequency Distributions of Variants Compared with Those in Other Southeast Asian Countries

    Get PDF
    We conducted a survey of glucose-6-phosphate dehydrogenase (G6PD) deficiency among newborn babies at Tu Du Hospital, Ho Chi Minh, southern Vietnam. A total of 90 deficient babies were detected, including 85 in the Kinh ethnic group, 4 Chinese, and 1 in the K’Ho minority group. In the Kinh ethnic group, G6PD variants such as G6PD Viangchan (n=32), Kaiping (n=11), Canton (n=8), Chinese-5 (n=7), Union (n=5) and Quing Yuan (n=4) were detected. A variant with silent mutations at 1311 C>T and IVS11 nt 93 T>C was also detected in 17 cases. A novel mutation (173 A>G) in exon 4 with a predicted amino acid change of 58 Asp>Gly was also found in a Kinh newborn girl and her father, and it was designated as G6PD Ho Chi Minh. These findings demonstrated that the Kinh ethnic group in southern Vietnam has 8 different G6PD variants, indicating that the members of this group have many ancestors in terms of G6PD variants from Southeast Asia, China, and Oceania. We compared the frequency distribution of G6PD variants in the Kinh population with those of other Southeast Asian populations, and the Kinh population’s distribution was quite similar to that in the Thai population, but differed from it by the absence of G6PD Mahidol

    A broad distribution of the alternative oxidase in microsporidian parasites

    Get PDF
    Microsporidia are a group of obligate intracellular parasitic eukaryotes that were considered to be amitochondriate until the recent discovery of highly reduced mitochondrial organelles called mitosomes. Analysis of the complete genome of Encephalitozoon cuniculi revealed a highly reduced set of proteins in the organelle, mostly related to the assembly of ironsulphur clusters. Oxidative phosphorylation and the Krebs cycle proteins were absent, in keeping with the notion that the microsporidia and their mitosomes are anaerobic, as is the case for other mitosome bearing eukaryotes, such as Giardia. Here we provide evidence opening the possibility that mitosomes in a number of microsporidian lineages are not completely anaerobic. Specifically, we have identified and characterized a gene encoding the alternative oxidase (AOX), a typically mitochondrial terminal oxidase in eukaryotes, in the genomes of several distantly related microsporidian species, even though this gene is absent from the complete genome of E. cuniculi. In order to confirm that these genes encode functional proteins, AOX genes from both A. locustae and T. hominis were over-expressed in E. coli and AOX activity measured spectrophotometrically using ubiquinol-1 (UQ-1) as substrate. Both A. locustae and T. hominis AOX proteins reduced UQ-1 in a cyanide and antimycin-resistant manner that was sensitive to ascofuranone, a potent inhibitor of the trypanosomal AOX. The physiological role of AOX microsporidia may be to reoxidise reducing equivalents produced by glycolysis, in a manner comparable to that observed in trypanosome

    Biochemical Studies of Mitochondrial Malate: Quinone Oxidoreductase from Toxoplasma gondii

    Get PDF
    Toxoplasma gondii is a protozoan parasite that causes toxoplasmosis and infects almost one-third of the global human population. A lack of effective drugs and vaccines and the emergence of drug resistant parasites highlight the need for the development of new drugs. The mitochondrial electron transport chain (ETC) is an essential pathway for energy metabolism and the survival of T. gondii. In apicomplexan parasites, malate:quinone oxidoreductase (MQO) is a monotopic membrane protein belonging to the ETC and a key member of the tricarboxylic acid cycle, and has recently been suggested to play a role in the fumarate cycle, which is required for the cytosolic purine salvage pathway. In T. gondii, a putative MQO (TgMQO) is expressed in tachyzoite and bradyzoite stages and is considered to be a potential drug target since its orthologue is not conserved in mammalian hosts. As a first step towards the evaluation of TgMQO as a drug target candidate, in this study, we developed a new expression system for TgMQO in FN102(DE3)TAO, a strain deficient in respiratory cytochromes and dependent on an alternative oxidase. This system allowed, for the first time, the expression and purification of a mitochondrial MQO family enzyme, which was used for steady-state kinetics and substrate specificity analyses. Ferulenol, the only known MQO inhibitor, also inhibited TgMQO at IC50 of 0.822 μM, and displayed different inhibition kinetics compared to Plasmodium falciparum MQO. Furthermore, our analysis indicated the presence of a third binding site for ferulenol that is distinct from the ubiquinone and malate sites

    Ⅰ Lectures and Research Reports 3. Region, Cultural Properties, and Governmental Administration

    No full text
    本報告書は、平成29年(2017)12月22日(金)に奈良文化財研究所平城宮跡資料館講堂において開催した平成29年度遺跡整備・活用研究集会“史跡等を活かした地域づくり・観光振興”に関する報告書である

    Helicobacter pylori Outer Membrane Protein-Related Pathogenesis

    No full text
    Helicobacter pylori colonizes the human stomach and induces inflammation, and in some cases persistent infection can result in gastric cancer. Attachment to the gastric mucosa is the first step in establishing bacterial colonization, and outer membrane proteins (OMPs) play a pivotal role in binding to human cells. Some OMP interaction molecules are known in H. pylori, and their associated host cell responses have been gradually clarified. Many studies have demonstrated that OMPs are essential to CagA translocation into gastric cells via the Type IV secretion system of H. pylori. This review summarizes the mechanisms through which H. pylori utilizes OMPs to colonize the human stomach and how OMPs cooperate with the Type IV secretion system
    corecore